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Abstract. We study suspensions of charged mesoscopic spheres (colloids) near typical dielectric
interfaces. Having a dielectric constant that is different from that of the suspension, the interface
gives rise to image-charge-induced forces which compete with the usual double-layer forces acting
between the colloids. Within the framework of Poisson–Boltzmann theory we calculate the total
force acting on an interfacial macrosphere for a broad range of possible system parameters. These
are: the ratio of dielectric constants of the two media, the charge and size of the macroion, its
distance from the wall, the temperature and volume fraction of the suspension. To reduce the
number of parameters, use is made of the scaling property of the Poisson–Boltzmann equation in
the salt-free approximation. We have furthermore performed Monte Carlo simulations to investigate
finite-size effects of the microions. We discuss, quite generally, how both confinement effects and
image charges affect the structural properties of interfacial colloidal suspensions and explain how
our results can be used for estimating their effects in experiments.

1. Introduction

The interaction of many important biomolecules in solution, among them such prominent
examples as the DNA molecule, is dominated by the electric double layer that forms around
the charged molecules when they are suspended in a polar solvent. A particularly simple model
system that lends itself well to the study of these double-layer interactions is a suspension of
highly charged spheres (mesoscopic in size) in a microionic fluid (realized, for instance, by
an aqueous latex suspension). While, in bulk, this example of a charge-stabilized colloidal
suspension has been the subject of a vast number of theoretical investigations [1], there are
only very few studies of the structural properties of interfacial colloidal suspensions [2–5], and
of them, an even smaller number take proper account of image charges to simulate the effect
of the dielectric discontinuity at the interface [3–5].

This is the more surprising since this simple suspension is again well suited as a model
system to study, in general, the basic effects of image charges on the structural properties of a
suspension of charged objects, be it an ion near a protein or a single DNA molecule (carrying
a large charge) near a membrane [6]. With respect to membrane/electrolyte systems, only
a few studies exist that have addressed the question of image-charge effects [7, 8]. But also
concerning the ongoing debate [2, 3] about the unexpected findings of attractive interaction
between colloids near and between planar glass walls [9] and at the air–water interface [10],
a clear understanding of the role played by image charges is a necessary prerequisite for
coming to any consistent interpretation of the experimental data. Other examples for the
significance of image charges are the problem of aggregation [11], melting [12], structural
ordering of colloidal dispersions near walls [5, 13, 14], and even the question of the effective
colloid/colloid interaction in bulk [15].
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The bulk behaviour of macroionic suspensions is expected to change significantly in the
presence of neutral or charged dielectric interfaces in contact with, or confining the dispersion,
such as electrodes, container walls, and air. The present article addresses the question of
what effect such a dielectric interface will have on the structure of a concentrated suspension
of charged colloids. In particular, we want to know whether a colloid (or macroion, which
we use as synonym for the word ‘colloid’) near the interface experiences additional image-
charge-induced forces, and if so, how strong these are. We do not have a particular interface
in mind, but aim to discuss—in as general terms as possible—the effect solely of the dielectric
discontinuity on the colloid. The interface therefore is thought of as a planar, structureless,
uncharged wall confining the colloidal suspension. Its dielectric constant, ε′, is different from
the dielectric constant ε of the solvent.

To demonstrate that the guiding question of this article has no trivial answer, we briefly
mention the various aspects of the problem. First, the wall is not penetrable, neither for the
colloid nor for electrolyte ions. This results in a pure confinement effect which arises from
the distortion of the ionic atmosphere around each interfacial colloid. Secondly, the dielectric
discontinuity across the interface will lead to additional external fields felt by all ions near
the wall (macroions and microions). And, third, any interfacial colloid will still interact with
all other colloidal particles in the solution plus their surrounding ions. We will see that the
combination of the last two factors leads to an attractive net force on the interfacial colloid
for all ratios ε′/ε between zero and one, while the confinement effect leads to repulsion. The
question thus is that of which effect prevails and at what wall–particle distance and whether
or not these forces will be strong enough to cause any significant structural rearrangement
of the colloidal suspension near the wall. We will answer this question with the help of a
Poisson–Boltzmann (PB) cell theory and Monte Carlo (MC) simulations.

There are a number of works concerned with image-charge effects in pure electrolyte
solutions, a problem that is closely related to ours. An electrolyte close to a charged planar
wall has been the subject of MC simulations by Torrie et al [16] and by Bratko et al [17]. A
similar system has also been investigated by Kjellander and Marcelja [18] on a hypernetted-
chain level, as well as by Levine and Outhwaite [19] who have done similar work within
the framework of the PB theory. Linse [20], employing the same concept (image charge),
performed a MC simulation in the cell model approximation [21, 22] to investigate the effect
of image charges on the properties of a spherical electric double layer for a micellar model
system. Several papers can be found where the Debye–Hückel theory, based on the linearized
PB equation, has been generalized to interfacial geometries [23–25].

This article is divided into two main sections: section 2 where we introduce our PB cell
model, discuss the resulting boundary-value problem and present our PB results; and section
3 which is devoted to the presentation of the MC data.

2. Poisson–Boltzmann theory

2.1. The interfacial Poisson–Boltzmann cell model

We model the charge-stabilized colloidal suspension by mesoscopic, charged spheres that
are suspended in a solvent and surrounded by microions. We assume that there is a finite
concentration nm of these spherical macroions, so the volume per macroion is VWS = 1/nm

(this is equal to the Wigner–Seitz (WS) cell volume in the crystalline phase). The macroion has
a radius a and fills a volume Vm = 4πa3/3. Each bears Z positive charges and thus produces
the same number of singly charged, negative, point-like counterions, whose concentration then
is c0 = Z/ṼWS with ṼWS being the part of the WS cell volume that is not already occupied by
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the macroion, ṼWS = VWS −Vm. In addition, there are usually other microions (salt) present in
the suspension, but, for reasons that soon become obvious, we here assume that their number
per cell is much smaller than the number of counterions. This approximation is good for highly
de-ionized solutions and/or for suspensions of sufficiently high concentration.

The forces between the macroions are determined by the (inhomogeneous) distribution of
the microionic fluid between them. On a mean-field level of description, this distribution of
the mobile microions can be calculated from the PB equation [26]. Though being originally
designed for the case of isolated charged objects in an ionic solution, the PB theory applies
equally well to concentrated suspensions of charged colloids, provided that the cage of
neighbouring macroions is modelled by a cell of finite volume, to which the macroion is
confined. The entire problem of finding the density distribution then reduces to solving the
PB equation inside a single cell only. Such PB cell models are useful because they allow
conversion of the whole problem into one well-defined boundary-value problem (BVP), and
have been used repeatedly not only for describing bulk colloidal suspensions [27–33], but also
for PB theories for swollen clay [34] and polyelectrolytes [22, 35].

The basic assumption of these cell models is that every colloidal particle of the suspension
experiences the same environment, which we know is strictly true only for the crystalline phase.
So, in a bulk suspension, each macroion is assumed to be located at the centre of its cell, and
all cells of the suspension have the same volume and shape. The presence of the other particles
of the suspension is taken into account by the appropriate choice of the boundary conditions.
These conditions plus the PB equation then constitutes a BVP whose solution provides us with
a mean electrostatic potential and thus a microionic density distribution. From it, one can then
derive general thermodynamic quantities of the suspension, such as the osmotic pressure [28],
or more specific quantities, such as the effective pair forces between the particles [32].

Considering in this article a suspension that borders a dielectric interface, we here suggest
a cell model that is adapted to the interfacial geometry (figure 1). The WS cell of a colloidal
particle near to a dielectric interface is now assumed to have the shape of a cylinder of radius
r0 and length z1 (the z-axis is perpendicular to the wall, with z = 0 defining the interface). r0

is given by the volume of the WS cell, VWS = πr2
0z1, with the additional assumption that the

cell has the same aspect ratio as a cube, z1 = 2r0†. The macroion inside this cell is situated at
z = z0 and r = 0. At z = 0, the dielectric constant of the medium changes from ε′ to ε. At
z < 0, there are no real charges.

Inside this interfacial cell, we solve the PB equation which in our salt-free case reads

∇2�(�r) = 4πλBρ(�r) (1)

with a charge density ρ(�r) that depends on � = eβ�, the normalized mean electrostatic
potential, in the following way:

ρ(r, z) = c0e�(r,z)�(R(r, z) − a) + ρm(r, z). (2)

λB = e2β/ε is the Bjerrum length, and β = 1/kBT the inverse temperature. The charge
distribution ρ(�r), equation (2), is given in units of −e and consists of two terms of which
the first is the contribution of the microions in the region exterior to the colloid. This is
ensured by the � step function, which changes from zero to one when its argument becomes
greater than zero. R measures the radial distance of a point inside the cylinder to the centre,
R2 = r2 + (z − z0)

2. The second term in equation (2), ρm, is the charge distribution of
the colloid, whose charges are usually assumed to be homogeneously smeared out over the

† This additional approximation is not necessary. One can allow for two independent parameters, z1 and r0, and
then find the optimal aspect ratio from minimizing the total free energy per cell with respect to the aspect radius. We
checked the sensitivity of our results to the aspect ratio, and found only a very weak dependence on it.
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Figure 1. The interfacial cell model: a colloid of charge Ze is located at a position z0 inside a
cylindrical Wigner–Seitz (WS) cell of length z1 and radius r0 with 2r0 = z1. This cell is filled with
Z counterions and confined by three surfaces S1, S2, and S3, of which S1 is a dielectric interface
where the dielectric constant of the medium changes from ε to ε′. In the ε′-medium, there is the
mirror image of the original cell, the image cell, with the confining surfaces S1, S′

2, and S′
3.

colloidal surface. To reduce grid errors in our numerical procedure, we however take them to
be homogeneously distributed in a thin spherical shell near to the colloidal surface. This shell
is defined by the two radii b and a (b < a, a − b � a). The colloidal charge density then
reads

ρm = −3Z�(a − R)�(R − b)

4π(a3 − b3)
(3)

and is, of course, not dependent on the electrostatic potential.
In order to be able to set up a BVP, we have to specify the boundary conditions for our

cell model. Let us call the three confining surfaces of the cell S1, S2, and S3, the first one
being the interface to the dielectric medium, the second one the surface of the cylinder, and
the last one the surface directed towards the bulk suspension (see figure 1). If for the moment
we assume the colloidal particle to be located at the centre of the cell, z0 = 0.5z1, then the
boundary conditions at S2 and S3 follow from the assumption that the corresponding surfaces
lie sufficiently near to the mid-planes between two neighbouring colloids where, for symmetry
reasons, the electric fields exactly cancel each other. The third boundary condition at S1 comes
from the requirement that the jump in the normal component of the electric displacement field
across the interface must be equal to the surface charge density −eσ at the interface. Collecting
the pieces together now, we obtain the following BVP:(

∂2
r +

1

r
∂r + ∂2

z

)
�(r, z) = 4πλB

(
c0e�(r,z)�(R − a) + ρm(r, z)

)
S1: ε ∂z�

∣∣
z=0+ = ε′ ∂z�

∣∣
z=0− + 4πe2βσ

S2: ∂r� = 0

S3: ∂z� = 0.

(4)

In addition, we have to require that (i) the potential is continuous across the interface and that
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(ii) each WS cell must be electrically neutral. We therefore choose the additive constant of �
such that

c0

∫
ṼWS

e� dV = Z + !. (5)

Then the total number of counterions in a cell equals the sum of the colloidal charge number
plus the interfacial charge number, ! = σπr2

0 .
Equation (4) can be brought into a more convenient form by introducing reduced units. A

good candidate as a unit length is the radius a of the colloid which in the following we take to
be one. Recalling that c0 = Z/ṼWS and realizing that

ṼWS = Vm

1 − φvol

φvol

(6)

with φvol = Vm/VWS being the volume fraction and Vm = 4π/3 the volume of the colloidal
particle, we rewrite equation (4) using equations (3) and (6) as(
∂2
r +

1

r
∂r + ∂2

z

)
�(r, z) = 3λ̃BZ

(
φvol

1 − φvol

e�(r,z)�(R − 1) − �(1 − R)�(R − b)

1 − b3

)

S1: ∂z�
∣∣
z=0+ = ε′

ε
∂z�

∣∣
z=0− + 4πλ̃Bσ̃

S2: ∂r� = 0

S3: ∂z� = 0.

(7)

The tilde over λ̃B is to remind us that the Bjerrum length has to be given in units of a now.
For the same reason we write σ̃ = σa2. From equation (7), one can recognize that the whole
calculation needs four independent input parameters, which are the volume fraction φvol , the
ratio of dielectric constants ε′/ε, the scaled colloidal charge Zλ̃B , and the scaled interfacial
surface charge σ̃ λ̃B . The parameter b (b < 1) also appearing in equation (7), has been
introduced for technical reasons only. We have made sure that it does not affect our results.

That the problem can be reduced to just four independent parameters, is owed to the fact
that the PB equation in the salt-free case scales with ZλB/a, an observation first made by
Groot [29]. This scaling property is lost when salt ions are present which is the main reason
for our considering the salt-free limit. It enables us to study the problem in the widest possible
sense by working through these four parameters only. However, since our main concern in
this article is the study of image-charge effects on colloidal particles, we concentrate on cases
where σ = 0.

In a purely electrostatic problem, the complicated boundary condition at S1 in equation (7)
is satisfied by means of the well-known image-charge method, where every ion of charge q in
the neighbourhood of the dielectric wall has an image charge of a magnitude qη with

η = ε − ε′

ε + ε′ (8)

in the half-space where z < 0. We know that in most experimentally relevant cases, ε is much
larger than ε′ (water: ε = 78; air: ε′ = 1.0; quartz, SiO2: ε′ = 4.5; micas: ε′ = 5.4). It
should therefore suffice to investigate ratios ε′/ε between zero and one only, so that η varies
between η = 1 (for ε′/ε = 0) and η = 0 (for ε′/ε = 1). That means that the image charges
for ε′/ε = 0 will have the same sign and the same magnitude as the original charges, while
they will be non-existent when ε′/ε = 1. In the appendix, we explain why this method cannot
be applied straightforwardly to a PB problem. We therefore solve equation (7) by an iterative
procedure explained below and use the image-charge concept in our MC simulations only.
We nevertheless will repeatedly refer to image charges in the discussion of our PB results
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because image charges are not only a powerful technical concept, but also useful for picturing
the effects arising from the dielectric discontinuity.

Note that the BVP of equation (7) leads back to a bulk cell problem, if we choose σ = 0
and ε′ = 0. For then, the electric fields on all three sides are the same in accordance with
the symmetry requirement in a bulk situation. The only difference from the standard PB cell
model [28] then remains the cylindrical shape of the cell as opposed to the spherical cell usually
assumed; but as regards the density profiles, this difference has proven to be insignificant. At
first, one might think that a choice ε′ = ε should give the bulk situation; but from equation (8),
we know that ε′ = 0 means that the image charges are fully switched on (η = 1). The
ion distribution in the cell at z > 0 thus has a perfect mirror image at z < 0. The latter
then simulates the density distribution in a next-neighbour cell in bulk. Hence, for symmetry
reasons, the normal component of the electric field must vanish at z = 0. The bulk situation
is thus recovered.

Finally, we note that the surface of the colloidal particle defines another interface where
the dielectric constant changes. This will lead to image charges inside the colloid which we
have not taken into account here, but which in an anisotropic situation like ours can have an
effect as well.

2.2. The iterative procedure for the matching condition

Equation (7) as it stands can only be solved in the special case where ε′ = 0 because only then
does one have clearly defined boundary conditions at all three confining surfaces of the cell.
If ε′ �= 0, then the condition at S1 constitutes, strictly speaking, a matching condition rather
than a boundary condition. It links the potential at z > 0 to the potential at z < 0 which is a
solution to the Laplace equation. We now explain an iterative procedure by means of which
these two solutions can be linked together.

To calculate the potential at z < 0 we construct an image cell in the negative half-space
(z < 0) where the dielectric constant is ε′ (see figure 1). It is the mirror image of the original
interfacial cell at z > 0. Its confining surfaces are S1, S ′

2, and S ′
3. There are no real charges in

this cell, so the problem to solve is(
∂2
r +

1

r
∂r + ∂2

z

)
�(r, z) = 0

S1: �
∣∣
z=0 = v(r)

S ′
2: ∂r� = 0

S ′
3: ∂z� = 0

(9)

with a potential v(r) at S1 that we soon specify. Equation (9) has the following solution:

�(r, z) =
∞∑

m=1

AmJ0

(
y0m

r

r0

)
cosh

(
y0m

z + z1

r0

)
(10)

where the coefficients Am are given by

Am = 2

(
cosh

(
y0m

z1

r0

)
r2

0J
2
0 (y0m)

)−1 ∫ r0

0
v(x)xJ0

(
y0m

x

r0

)
dx. (11)

In these expressions, J0 and J1 are the usual Bessel functions and y0m is the mth root of the
function J1. The derivative of equation (10) at z = 0 is

∂z�(r, 0) =
∞∑

m=1

BmJ0

(
y0m

r

r0

) ∫ r0

0
v(x)xJ0

(
y0m

x

r0

)
dx (12)
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with

Bm = tanh

(
y0m

z1

r0

)
2y0m

r3
0J

2
0 (y0m)

. (13)

With equations (9) to (13) to hand, we can now give an iterative scheme to solve
equation (7). Let us call �(n) the potential in the nth iteration cycle. From equation (7),
we see that in order to be able to calculate that potential we need to know ∂z�

(n)
∣∣
z=0+, which

we can now obtain from equation (12). This expression in turn is based on the knowledge
of the potential at z = 0, that is on v(r), for which we take the potential from the previous
iteration step, �(n−1). To cast this idea into a mathematical form, we rewrite equation (7) once
more and find(
∂2
r +

1

r
∂r + ∂2

z

)
�(n)(r, z)

= 3λ̃BZ

(
φvol

1 − φvol

e�
(n)(r,z)�(R − 1) − �(1 − R)�(R − b)

1 − b3

)

S1: ∂z�
(n)

∣∣
z=0+ = ε′

ε

( ∞∑
m=1

BmJ0

(
y0m

r

r0

) ∫ r0

0
�(n−1)(x, 0)xJ0

(
y0m

x

r0

)
dx

)
+ 4πλ̃Bσ̃

S2: ∂r�
(n) = 0

S3: ∂z�
(n) = 0

(14)

plus the condition

c0

∫
ṼWS

e�
(n)

dV = Z + ! (15)

for the choice of the additive constant of �(n). The coefficients Bm appearing in equation (14)
are to be taken from equation (13). This iterative scheme ensures that (i) the potential is
continuous across the interface, (ii) the normal component of the electric displacement field
changes in the correct way, and (iii) the additive constant of the potential is chosen in accordance
with the electro-neutrality condition. As an initial value for the potential one can take the
solution of equation (7) for ε′ = 0. In practice, one varies the ratio ε′/ε starting from ε′/ε = 0
and takes the solution for a given value of this ratio as an initial guess for the next higher value.

Given the solution � from equation (14), we can now calculate the force acting on the
colloid. Clearly, it is directed in the z-direction and we abbreviate its z-component as Fz. It

can be obtained by integrating the stress tensor ��T :

��T =
(
. +

ε

8π
E2

)
��I − ε

4π
�E �E (16)

(. is the local osmotic pressure, �E the electric field) over a surface S enclosing the colloidal
particle:

Fz =
∫
S

dS �n · ��T · �ez. (17)

�n is a unit vector directed normal to the surface S (inward direction); �ez is a unit vector in
the positive z-direction. A natural choice for the enclosing surface are the three surfaces
confining our cell, i.e. S1, S2, and S3. At S2, we know from equation (14) that the electric field
component normal to the surface is zero, so the tensor element Trz vanishes. Then, evaluation
of equation (17) shows that the force takes a particularly simple form:

γFz = γF(0) − γF(z1) (18)
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with γ = 4λBβ and

γF(z) =
∫ r0

0

[
6λ̃BZφvol

1 − φvol

e�(r ′,z) +

(
∂r ′�(r ′, z)2 − ∂z�(r ′, z)2

)]
r ′ dr ′. (19)

Note that the force is given in the usual dimensionless form. The first term in equation (19) is
due to the local osmotic pressure while the second accounts for the stress induced by the electric
field. It is advisable to check the function γF(z) because it is of great help for monitoring
the accuracy of the calculation. Ideally it should be a horizontal line for all z < z0 − 1 and
a different, but again horizontal line for all z > z0 + 1, i.e., to the left and to the right of the
colloidal particle. This is so because any surface enclosing the particle should result in the
same force; the exact position of S1 and S3 in the integration of equation (17) should therefore
not matter as long as each of these surfaces remains on its respective side of the particle.

2.3. Results: forces and surface charges

In this article, we seek to obtain an idea as to what effect a dielectric interface will have on
the structure of a concentrated colloidal suspension, and this includes, in particular, whether
there is an additional wall-induced force acting on an interfacial colloid. In the framework of
the interfacial cell theory presented above, we are now in the position to answer this question
with the help of equations (14) and (18).

At this point, it is important first to realize that there are two distinct effects relevant in
this context. These are: (i) a pure confinement effect and (ii) an image-charge effect. By
confinement effect, we mean that the electrolyte is confined to the half-space where z > 0 by
the very existence of the wall. A spherical double layer around a colloidal particle approaching
this wall will therefore become distorted and this distortion will necessarily cost free energy.
Therefore, repulsion is to be expected, when the particle is sufficiently close to the wall for
this effect to occur.

Image charges exert additional forces on the ions in the interfacial cell. To predict their
effect on the colloidal particle, we need to remember that the colloid is located at the centre
of a cell that borders not only the dielectric medium (at S1; see figure 1) but also the next cell
(at S3). The ions inside the interfacial cell will therefore be exposed not only to the image
charges from the region z < 0 but also to the charges of the neighbouring cell at z > z1.
(These charges, of course, do not appear in our computational scheme explicitly, but enter the
calculation through the boundary conditions in equation (14).) This is why the actual force in
equation (18) is the difference between two terms: one arising from the image charges, γF(0),
the other from the charges in the neighbouring cell, γF(z1).

For all cases where η < 1, we can thus predict an attractive net force pulling the colloid
towards the wall because the image charges with a charge of ηq will exert a force that is—
though repulsive—not strong enough to balance the forces from the corresponding ions in the
cell at z > z1, i.e. γF(0) < γF(z1) in equation (18). In the following, we call the effect
resulting from this charge imbalance the ‘image-charge effect’. Only in the case where ε′ = 0
(η = 1) will the image charges be able to match the charges from z > z1, and a totally
symmetrical, bulk-like situation is recovered where there is no net force on the colloidal
particle, γF(0) = γF(z1).

Taken together, we have to expect an image-charge-induced attraction and a confinement-
induced repulsion of the colloidal particle, and the question now is that of which one dominates
and at what particle–wall separation. We could write down the boundary condition at S3 in
equation (14) because we assumed the colloid to be in the centre of its cell, that is at z0 = z1/2.
In this colloidal position, the double layer around the colloid has the same space to extend over
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towards S1 as it has towards S3. We thus start with the consideration of a situation where there
is no confinement effect, but only the image-charge effect. Later we will consider a colloid
shifted from the centre position and will allow the two effects to compete with each other.

Figure 2 gives the total force acting on the colloidal particle in the centre of its cell as a
function of the ratio ε′/ε for several values of Zλ̃B and φvol . The numerical procedure that we
have used to solve the PB equation is the same as that in references [32,33]. We first note that,
indeed, for a centric position the force acting on the colloid is always attractive and directed
towards the wall. We therefore expect the force-free position for the colloid to lie at z < z1/2.
Second, our expectations are confirmed in that the imbalance between γF(0) and γF(z) and
thus the net force is largest when the image charges vanish, i.e. when ε′ = ε, and that it is
zero when ε′ = 0. The force increases with growing ε′/ε, with increasing volume fraction
and with increasing colloidal charge, Zλ̃B .

0.0 0.5 1.0
ε’/ ε

-0.4

-0.3

-0.2

-0.1

0.0

4 
λ B

β 
F z

φ
vol

 = 0.1

φ
vol

 = 0.05

φ
vol

 = 0.01

Z λ
B
 / 2 a = 7.5

Z λ
B
 / 2 a = 25

Figure 2. The total force acting on a colloid located at the centre of an interfacial cell for varying
ratios of ε′/ε. The force is attractive and grows with increasing volume fraction φvol and scaled
colloidal charge ZλB/2a.

It is also interesting to have a look at the partial forces, γF(0) and γF(z1), whose
difference gives the net force, see equation (18). In figure 3 we show γF(0) as a function
of Zλ̃B for the two limiting cases ε′/ε = 0 and ε′/ε = 1. Three different volume fractions
are considered again. The γF(z1) plot is not shown because it lies, for both cases ε′/ε = 0
and ε′/ε = 1, directly on top of the γF(0) curve of the ε′/ε = 0 calculation. This is not an
unimportant observation because it demonstrates that changes at the one end of the cell, that
is at z = 0, have no effect on the density and field distribution at the other end, i.e. at z = z1.
So the changes in the double layer induced by the dielectric wall take place—for all cases of
practical relevance—on a scale much smaller than the mean distance z1 between the colloidal
particles of the suspension.

The difference between the dashed–dotted and the solid line in figure 3 gives the net force
at ε′/ε = 1 in figure 2. We observe that this net force is much smaller than the partial forces
γF(0) andγF(z1). γF(0) shows furthermore a saturation behaviour which can be traced to the
well-known phenomenon of ion condensation, a typical feature of non-linear PB theory [27].
Similar behaviour is found when quantities like the effective charges are plotted [28]. Due to
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Figure 3. The partial force γF(0) acting on the centred colloid from the wall side as a function
of the colloidal charge. The total net force follows if the force γF(z1) acting from the bulk side
is subtracted, equation (18). γF(z1) lies on top of the γF(0) curve for ε′ = 0, since this ε′-value
leads back to a bulk situation where there is no force acting on the colloid and thus F(0) = F(z1).

this saturation behaviour, the force curves in figure 2 for higher colloidal charges approach a
common limiting curve which is not much different from the curve for Zλ̃B/2 = 25. Varying
Zλ̃B/2 between 0 and 25, we have thus scanned the most important regime; going any further
would not provide more information.

A key to utilizing these curves for experiments lies in the fact that they are of help for
estimating the wall-induced forces. Often there are additional surface charges at the interface
and the question might arise of whether effects coming from the dielectric discontinuity then
become comparatively negligible or not. This can be estimated by comparing the real surface
charges with the polarization charges, an aspect of the problem that we study using figure 4.
We there show the derivative of the electrostatic potential at z = 0, ∂z�(0) (which is equal to
−eβ times the electric field, Ez(0)). This can be identified with a dimensionless polarization
surface charge density 4πλ̃Bσ̃pol . In the BVPs of equations (7) and (14), these polarization
charges are identical to the first term in the r.h.s. of the boundary condition for the S1-boundary.
The second term, 4πλ̃Bσ̃ , accounts for any additional interfacial charges that one would have
to add to these polarization charges. With respect to a specific experiment, one has to compare
these two terms with the help of the data of figure 4 in order to be able to determine the
relative importance of polarization charges. The curves for smaller volume fractions and ε′

look similar, but the polarization charges are always smaller. Note that, as a result of the ion
condensation, the curves again approach a limiting curve with increasing colloidal charge. So,
for a rough estimate of image-charge effects in colloidal systems with charges higher than
Zλ̃B/2 = 25, one can use this limiting curve.

Next, we want to displace the colloid from its centre position to see how important the
confinement effect is relative to the image-charge effect considered so far. The problem with
a colloidal position z0 �= z1/2 is that the plane of symmetry between the shifted colloid in
the interfacial cell and the centric colloid at z = 3z1/2 in the next-neighbour cell is no longer
at zsym = z1, but is now at zsym = z0 + l/2 where l = 3z1/2 − z0 is the relative separation
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Figure 4. The normal component of the electric field at the dielectric interface as a function of
the radius r . This electric field is equivalent to the surface polarization charge density induced
by the dielectric discontinuity. The eight curves are for several colloidal charges (3ZλB/a =
5, 25, 45, 65, 85, 105, 125, 145 from bottom to top).

of the colloids. For z0 < z1/2, zsym is inside the interfacial cell. Thus, the plane where the
normal electric field vanishes is not at S3 any more, contrary to what we have assumed for the
boundary S3 in the BVP of equation (14). The question thus is that of what boundary condition
to use at S3 in equation (14). This question is answered in the appendix, where we explain
how one can generate these boundary conditions from another BVP.

Figure 5 now shows the partial forces γF(0) and γF(z1) in equation (18) for two different
positions of the colloid, namely z0 = z1/2 and z0 = 2z1/5. The curves for the centric position
are the same as in figure 3. They show the image-charge effect where, due to the disappearance
of the image charges (ε′ = ε), the imbalance between the image charge distribution at z < 0
and the charge distribution at z > z1 is most pronounced, so γF(0) is invariably smaller
than γF(z1). The resultant force is attractive. For z0 = 2z1/5 however this changes: γF(0)
now becomes much larger than γF(z1) due to the confinement effect and the net force on the
colloid becomes highly repulsive for all colloidal charges. For z0 = 0.4z1, we also added the
force curve γF(0) for the case ε′ = 0 where there is no image-charge effect. This comparison
shows that when allowing for the image-charge effect, an attractive force becomes observable
which, however, is not strong enough to overcome the confinement-induced repulsion. Thus,
at z0 = 0.4z1 we have already reached a wall–particle distance where the confinement effect
dominates over the image-charge effect. The minimum (force-free) position of the colloid
will therefore lie somewhere between 0.4z1 and 0.5z1. In fact, its exact position is roughly at
0.45z1 for all scaled colloidal charges and all volume fractions considered (0.001 to 0.3). Note,
however, that z1 itself depends on the volume fraction so the absolute minimum positions vary
considerably with the volume fraction.

3. Monte Carlo simulation

As a major result of this work we have seen that for wall–particle distances smaller than
approximately z1/2, i.e. smaller than half of the mean bulk colloid–colloid distance, the forces
on the colloid become invariably repulsive due to the strong-confinement effect, irrespective of
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Figure 5. Partial forces γF(0) and γF(z1) for two different positions z0 = 0.4z1 and z0 = 0.5z1
of the colloid in the interfacial cell. While in the centre position γF(0) is always smaller than
γF(z1), it becomes greater than γF(z1) when the colloid is slightly shifted towards the wall.
Accordingly, the total force acting on the colloid becomes repulsive.

the presence of image charges. In this section, we look into the question of whether this result
is changed when the counterions are allowed to have a finite core radius. Since this cannot be
treated within the PB scheme presented above, we have performed MC simulations. To see
how big the finite-size effect can become, we study the extreme situation where a colloid is
touching the dielectric wall. Here finite-size effects can be expected to be most pronounced
because of the spatial confinement of the ions in the narrow region between the colloid and
the wall. For counterions with both finite and zero radius, we will calculate the free energy of
a colloid in such a touching position and compare it with the free energy of a colloid in a bulk
situation. If this energy difference is positive and only weakly dependent on the counterion
radius, we may conclude that the results of the previous section remain the same even for
counterions of finite size.

3.1. Computational details

Our MC simulation set-up is based on a cubic cell model—a macroion of radius a and chargeZe

in a cubic cell of length L (x ∈ [−L/2, L/2], y ∈ [−L/2, L/2], and z ∈ [0, L]) neutralized by
inhomogeneously distributed microions and suspended in water of dielectric constant ε = 78.3.
The cell model MC simulation is usually performed in a fixed configuration of the single
macroions while the microions explore the configuration space. In the bulk situation, it is
conventional to fix the macroion at the body centre of the cubic cell. Hence the macroion is
located at the Cartesian position (x, y, z) = (0, 0, L/2). We shall call this the bulk scheme
(BS). Here, no dielectric interface is involved and hence no surface polarization effects. In
the second scheme, the dielectric interface scheme (DS), the macroion is made to touch the
ε′-dielectric wall at z = 0, i.e., its position is at (0, 0, a).

The simulations were performed in the canonical ensemble at room temperature
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corresponding to a Bjerrum length λB = e2/(εkBT ) = 7.14 Å. The cell volume (and thus L)
is determined by the macroion volume fraction φvol = Vm/L

3. In the following simulations,
φvol = 0.01, 0.05, 0.10 are investigated. We again consider the salt-free case where the
microions are all monovalent counterions. We have already noticed that the PB equation then
scales with ZλB/a. Beyond the mean-field level, this, of course, ceases to be valid, and our
MC results will also depend on the ratio λB/a. We study values for λB/2a ranging from
λB/2a = 0.6 (small particle) to λB/2a = 0.03 (large particle).

In each scheme, the macroion remains fixed, and the counterions are moved through
the cell to sample the configuration space according to the traditional Metropolis algorithm
[36]. Periodic boundary conditions, the minimum image convention, and Ewald summation
schemes [37,38] are not applied in summing the Coulomb interactions. This is a consequence
of the cell model which assumes that contributions from neighbouring cells are negligible. The
validity of this approximation has been tested against a periodically repeated system where
the Ewald summation scheme was applied [29, 31]. In the DS, the situation is similar to
that of an electrolyte confined between a charged and an uncharged planar wall, described by
Wennerström et al [22].

In the BS, the total configurational potential energy of the ions:

U =
∑
i<j

uij (rij ) (20)

is averaged over the simulation, calculated in each run using the pair interaction potential

βuij (rij ) = u
rep

ij +
qiqjλB

rij
(21)

where the charge valence qi is Z (5 � Z � 300) for the macroion and −1 for the counterions.
The term u

rep

ij is a repulsive hard-sphere interaction:

u
rep

ij =
{

∞ if rij < dij

0 if rij > dij
(22)

where dij is the minimum distance of the centres of the ith and j th ions. dij = (dm + dc)/2
for macroion–counterion interaction, and dij = dc for counterion–counterion interaction, with
dm = 2a being the macroion diameter. The counterion diameter dc was chosen to be zero
(point ion) and 4.25 Å.

In the DS scheme, the electrostatic image charges of all ions in the solvent have to be taken
into account. An ion i with charge qie and coordinate (xi, yi, zi) in the positive half-space,
z > 0, has an image i ′ located at (xi, yi,−zi) in the ε′-medium whose charge is q ′

ie = ηqie

with η defined in equation (8). These image charges contribute to the potential in the ε-medium;
hence the total internal energy U , for N real ions in the cell, becomes the sum of contributions
from the real charges, equation (21), and image charges (uim). Thus,

U =
∑
i<j

[
uij (rij ) + uim

ij (rij )
]

+
∑
i

uim
i (zi) (23)

where uij (rij ) is the real-charge contribution, equation (21),

βuim
ij (rij ) = λB

ηqiqj

[x2
ij + y2

ij + (zi + zj )2]1/2
(24)

is the real–image-charge pair interaction potential, and

βuim
i (zi) = λB

ηq2
i

4zi
(25)
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is the interaction potential of a real charge with its own image charge (self-image potential
energy). The factor 1

2 that appears explicitly in the self-image energy and implicitly in the
uim
ij (rij ) pair energies is clarified in the appendix.

The total configurational energies were averaged over the simulation as in the previous
scheme. For both schemes, in each MC run, the system was equilibrated for about 45 000–
90 000 MC cycles, depending on the Coulomb coupling strength, and averages taken in the next
15 000–30 000 cycles. One MC cycle here corresponds to an attempted move of all mobile ions
in the system. Equilibration was ensured by arriving at roughly the same energy by starting
the simulation from a completely random configuration corresponding to infinite temperature,
and starting from a condensed configuration of the counterions on the macroions.

3.2. Monte Carlo simulations: results and discussion

The scaling of the PB equation with ZλB/2a has been demonstrated by Groot [29] for the
effective macroion charges. Likewise, the configurational energy per counterion scales with
ZλB/2a in the sense that β〈U〉/Z = f (ZλB/2a), where f is a unique function and 〈U〉 is the
averaged energy. This scaling behaviour implies that properties of particles, whose simulation
is currently impossible (for instance, micron particles with Z ∼ 104), can be extrapolated from
data for particles that can easily be simulated. For example, if we characterize a system whose
coupling strength is ZλB/2a = 10 (i.e. λB/2a = 0.1, Z = 100.0), then we can predict the
behaviour of all systems with the same coupling strength (e.g. λB/2a = 0.01, Z = 1000.0).

Figure 6 shows the energy per ion β〈U〉/Z against the scaled macroion charge λBZ/2a, in
the bulk situation, together with the PB scaling function. Consistently with Groot’s observation
for effective charges [29], the MC energies gradually move away from perfect scaling shown by
the PB function (which provides the upper limit), as the coupling increases from λB/2a = 0.03
(large particle, dm = 238 Å in water) to λB/2a = 0.6 (small particle, dm = 11.9 Å). This
behaviour is due to ion–ion correlation among the counterions which is well accounted for in
MC simulation but neglected by PB theory. Figure 6 confirms once more the well-known fact
that PB theory becomes correct in the limit λB/a → 0.

A more interesting result is the quantity β<〈U〉/Z = β(〈UDS〉 − 〈UBS〉)/Z which
measures the electrostatic internal energy gain or loss per counterion between the two schemes
(BS and DS), as a function of ZλB/2a. β<〈U〉/Z versus ZλB/2a is shown in table 1 for
two different counterion radii and a size ratio λB/2a = 0.03 which in figure 6 we have seen
to lie nearest to the PB solution. In the following, we will leave this parameter unchanged.
Furthermore, we consider a ratio of dielectric constants, ε′/ε = 0.08, typical of a glass–water
interface (ε = 78.3, ε′ = 6.3, η = 0.85).

The result shows negative β<〈U〉/Z values for high ZλB/2a coupling for all values of
φvol and dc considered. This means that from the purely electrostatic point of view, the situation
where the colloid touches the wall can become energetically more favourable than the bulk
situation where it is in the centre of its cell in an isotropic environment, a result that at first
looks surprising considering the large repulsive self-image interaction, equation (25), of the
colloid in the DS. This crossover behaviour of β<〈U〉/Z with increasing coupling strength can
be understood as follows: the positive β<〈U〉/Z for small ZλB/2a is in the regime of small
electrostatic coupling, where the density profile is only weakly sensitive to both the position
of the colloidal particle and the image charges. The positive value of β<〈U〉/Z is then caused
by the strong (unscreened) repulsion of the colloid by its own image. The change of sign of
this quantity in the regime of strong electrostatic coupling, on the other hand, can be attributed
to the fact that there are many more counterions attracted to the colloidal surface in the DS
than in the BS. This is due to the immediate neighbourhood of the colloid (with charge Z) and
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Figure 6. The average total internal energy per counterion, β〈U〉/Z, as a function of the scaled
colloidal charge, ZλB/2a. The solid line is the result from the PB cell theory, while the other lines
are results of MC simulations for the various values of the scaling parameter λB/2a. All points in
the figure were obtained at 1% macroion volume fraction with point counterions (dc = 0).

Table 1. The variation of β<〈U〉/Z with the macroion charge Z for λB/2a = 0.03 coupling, and
various simulation parameters. <〈U〉 is the average electrostatic energy difference between the
bulk and dielectric wall MC schemes. φvol is the macroion volume fraction and dc is the diameter
of the counterions. The negative values of <〈U〉 show where adsorption of the macroion at the
dielectric wall (DS scheme) is energetically favoured.

β<〈U〉/Z
ε′ = 0.08ε ε′ = ε

dc = 0 dc = 4.25 Å dc = 4.25 Å

ZλB/2a φvol = 0.01 φvol = 0.10 φvol = 0.01 φvol = 0.05 φvol = 0.10 φvol = 0.01

0.3 0.08749 0.08513 0.06045 0.05053 0.02220
0.6 0.15287 0.07664 0.15245 0.09893 0.07797 0.04369
0.9 0.20458 0.09419 0.20360 0.12171 0.09417 0.05661
1.2 0.23075 0.10485 0.23258 0.14201 0.10505 0.06748
1.5 0.10945 0.24198 0.11160 0.07580
1.8 0.23519 0.09452 0.13425 0.11693 0.08318
2.4 0.18507 0.19806 0.09407 0.07630
3.0 0.09337 0.07020 0.16141 0.08846 0.10143 0.09544
3.6 −0.01140 0.05329 0.09707 0.07570 0.02965
4.5 −0.10738 0.04461 0.05500
6.0 −0.12685 −0.00540 −0.08560 0.00491 −0.01648
7.5 −0.02259 −0.17947 −0.04457 −0.02501 −0.03931
9.0 −0.13259 −0.02582 −0.19853 −0.06526 −0.03933 −0.05583

its image (with charge ηZ) in the wall situation where the counterions are now attracted by a
total charge (1 + η)Z = 1.85Z which is much larger than the colloidal charge Z in the BS.
The preferred region for these counterions is the wedge region between the colloid surface and
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the wall where the counterion density is particularly high. This high density, together with the
spatial confinement, explains why finite-size effects of the microions become non-negligible,
as comparison of the values for dc = 0 and dc = 4.25 at ZλB/2a = 9.0 and φvol = 0.1 in
table 1 reveals.

We have not yet taken account of the entropic effect due the inhomogeneous distribution
of the counterions in the system. Actual adsorption should be determined from the total free
energy. A direct determination of free energy or entropy is not possible from the present MC
simulations [37,38]. Nevertheless, we can determine the total free-energy difference <A from
<〈U〉 calculated above through the following integration [39]:

β<A

Z
=

∫ β

0

<〈U〉
Z

dβ ′ (26)

which by a change of variables we transform into an integral over the function f (x) :=
β<〈U(x)〉/Z with x = ZλB/2a:

β

Z
<A(ZλB/2a) =

∫ ZλB/2a

0
f (x) dx. (27)

The free-energy difference as a function of ZλB/2a is plotted in figure 7 for the two cases
ε′/ε = 0.08 and ε′/ε = 1, i.e., when the image charges are fully switched on (η ≈ 1 if
ε′/ε = 0.08) and non-existent (η = 0 if ε′/ε = 1). Figure 7 reveals that (i) the free-energy
barrier between a centric bulk and a wall position of the colloid is always positive, for all cases
considered, (ii) the effect of the finite size of the counterions is relatively small, and finally,
(iii) with increasing volume fraction and when switching off the image charges (ε′ = ε), the
height of the barrier is reduced.

We have seen from table 1 that the configurational energy difference for large coupling
strength becomes negative. The positive free-energy difference of figure 7 must therefore
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Figure 7. The average free-energy difference per counterion, β<A/Z, obtained by integrating the
β<〈U〉/Z of table 1. The labels are as defined in table 1. The plots show that adsorption of a
macroion on the dielectric wall is not favoured in all aspects investigated. There are no negative
β<A/Z.
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be due to a negative entropy difference that overcompensates β<〈U〉/Z. In view of the
confinement effect analysed in the previous section, the explanation for this can obviously be
found in the reduction of counterion entropy due to the distortion of the double layer from
its spherical shape when the colloid touches the wall. We thus again end up by recognizing
that for small wall–particle distances this confinement effect is the dominating mechanism
that prevents the colloid from becoming adsorbed onto the wall. Figure 7 indicates that this
result remains unchanged even if the counterions have finite size. However, in the limit where
the electrostatic internal energy is dominant (vanishing configurational entropy), there exist
conditions where the colloid is attracted to its own image ion (having nearly same charge),
therefore favouring adsorption.

4. Conclusions and summary

Any charged object in the neighbourhood of an interface between media of different dielectric
constants experiences image-charge forces arising from the dielectric discontinuity. In a
concentrated suspension of macroions (these can be everything from globular proteins to
simple latex particles), these forces compete with the usual double-layer forces between the
macroions. A macroion next to such an interface experiences an anisotropic environment:
towards the bulk side it has the next-neighbour colloid screened in the usual way by its
microions, while towards the wall it sees the image charge of its own charge and those of
its double layer. Since the image charges in most experimentally relevant cases are weaker
than the real charges, this imbalance leads to an attractive wall-induced force on the colloid.

In this paper, we have been concerned with the question of how strong this attraction can
become and whether it could overcome, in principle, the confinement-induced repulsion that
is due to the distortion of the double layer through the wall. To answer this question, we have
suggested a cell model where the colloid plus its counterions is confined to a finite volume that
is just the reciprocal of the colloidal density. The ion distribution inside this cell can then be
calculated from the PB equation. Of crucial importance are the boundary conditions at the cell
boundaries, because it is through them that the physics of the problem comes into play. By
requiring the electric field to vanish at one side of the cell, while accounting for the dielectric
jump at the other, we take account of the anisotropic environment of the interfacial colloid,
with there being a colloid in the next-neighbour cell, on one side, and an interface, on the other.

The PB equation in the cell can be solved directly only in the special case where ε′ = 0.
If ε′ �= 0, then the condition at the interface constitutes a matching condition for the potential
on both sides of the interface. We suggested an iterative procedure by means of which these
two solutions can be linked together. That the PB equation scales with ZλB/a in the salt-free
limit has proven to be of great help in reducing the number of independent variables of the
problem. Concentrating on image-charge effects (no interfacial charges), we are left with
three parameters governing the problem, namely: ε′/ε, ZλB/a, and the volume fraction φvol .
Working through all three parameters in a systematic way, we have obtained the following
results:

(i) For wall–particle distances z0 a little smaller (z0 ≈ 0.4z1) than half of the mean bulk
colloid–colloid distance z1, the forces on the colloid become invariably repulsive due to
the strong-confinement effect. This holds for all values of ε′/ε between zero and one,
all volume fractions, and all scaled colloidal charges ZλB/a. That the latter statement is
true even though we could only go up to values of ZλB/2a = 25 follows from the fact
that because of ion condensation the forces on the colloid show a saturation behaviour
for growing colloidal charge. Values for scaled charges higher than ZλB/2a = 25 will
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therefore not produce new results.
(ii) As a result of this dominating confinement effect, we can therefore conclude that for a

broad class of suspensions, a major structural rearrangement of the colloidal suspension
near a dielectric interface is not to be expected. This should remain true even if allowance
is made for dispersion forces which are much shorter ranged than double-layer forces.

(iii) The relative importance of interfacial surface charges for the interfacial structure problem
of suspensions of spherical macroions can be estimated from our results by comparing
them with the polarization surface charge density calculated in figure 4. Only if the density
of the interfacial charges is much larger than the density of the polarization charges may
a significant effect on the colloids be expected.

(iv) In our MC simulation, we have proposed a cell model in the cubic approximation of the
Wigner–Seitz cell where the macroion is fixed on the surface of the dielectric interface
which results in: (a) distortion of the counterionic atmosphere around the colloid and
(b) the maximum effect of the surface polarization due to image charges. Free-energy
calculation for the class of dielectric interfaces investigated (ε′ � ε) reveals that this
adsorbed configuration of the macroion is never favoured relative to the bulk situation
where confinement and image-charge effects are negligible. This result holds for both
finite-size and point-like counterions.
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Appendix

A.1. The image-charge concept and the Poisson–Boltzmann equation

Let us begin by recalling the basic idea of the image-charge concept for a purely electrostatic
problem [40]. As in section 2, we use cylindrical coordinates. Let V = f (r, z) be the potential
for all z, if the whole space has a dielectric constant ε and all charges are confined to z > 0.
Replacing now the dielectric medium in z < 0 by another material with a dielectric constant
ε′, one can obtain the new potential from the old one through

V =
{
f (r, z) + ηf (r,−z) z � 0

(1 + η)f (r, z) z < 0
(A.1)

with η from equation (8). This new potential is continuous across the interface and its derivative
at z = 0 satisfies the matching condition

ε ∂zV
∣∣
z=0+ = ε′ ∂zV

∣∣
z=0−. (A.2)

The advantage of this scheme is that we can use the solution to the unbounded problem for the
interfacial problem.

This idea cannot naively be applied to a PB problem where mobile charges are involved.
This is so because the PB equation is a differential equation depending in a non-linear way on
the potential. If f (r, z) solves the PB equation in the unbounded problem, a construction like
that in equation (A.1) does not give a solution to the PB equation in the bounded problem, as
we will show now.

We look for a potential V that satisfies the Laplace equation

∇2V = 0 S ′: ∂nV = 0 (A.3)
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for z < 0 and the PB equation

∇2V = κ2eV S: ∂nV = 0 (A.4)

for z > 0. At the interface S1 (z = 0), the two equations are linked together through the
matching condition, equation (A.2), and the requirement that V must be continuous at z = 0.
The surface S defines the boundary (excluding S1) of the region where we want to solve the
PB equation. S ′ is the mirror image (z → −z) of this surface. At this boundary we fix the
derivative of the potential, ∂nV , in a direction normal to the surface.

Substituting now the potential, equation (A.1), into equations (A.3) and (A.4), we find

∇2f = 0 S ′: ∂nf = 0 (A.5)

for z < 0 and

∇2f (r, z) = κ2ef (r,z)eηf (r,−z) S: ∂nf = 0 (A.6)

for z > 0, where in the last equation we have used equation (A.5). The matching conditions
at S1 become

∂zf
∣∣
z=0+ = ∂zf

∣∣
z=0− (A.7)

and

f
∣∣
z=0+ = f

∣∣
z=0− (A.8)

which is nothing but the requirement that f must be continuously differentiable over the whole
space (in particular at z = 0, equations (A.7) and (A.8)). This reduction to one continuously
differentiable function is very much like that in the purely electrostatic case. However, in
contrast to the electrostatic case, we still have the variable η appearing in equation (A.6). It
enters through the non-linearity of the PB equation. The function f at z > 0 depends on the
function f at z < 0, and it is therefore not possible to reduce the problem to determining a
function for the unbounded system, as in the electrostatic problem. The problem can again be
solved iteratively, only.

A.2. Boundary conditions for eccentric colloidal positions

We here want to explain briefly how one can find the correct electric field distribution for
the boundary condition at S3 in the BVP of equation (14), if the colloid is not in the centre
of its cell but at a position z0 < z1/2. The colloid in the next-neighbour cell is assumed to
remain in its centre position which is at z = 3z1/2. Thus, the separation of the two colloids
is l = 3z1/2 − z0 and the plane of symmetry is at zsym = z0 + l/2, which is a distance
lsym = z1 − zsym = z1/4 − z0/2 > 0 away from S3 inside the interfacial cell, zsym < z1.
What then is the electric field distribution at z1 and thus the boundary condition at S3?

We want to answer this question with the help of a little extra calculation. Let us consider
two different problems. In problem (a) the interfacial colloid is located a z0 and the colloid in
the next-neighbour cell at 3z1/2. This is our original problem. In problem (b) the interfacial
colloid is situated at z00 = z1/4 + z0/2 (with z0 taken from problem (a)), while the colloid in
the neighbour cell is positioned at z00 + l with l = 3z1/2 − z0. This is our reference problem,
where both colloids are shifted the same distance away from their respective centre positions,
but in opposite directions. In the two problems the colloid–colloid distance is the same, but the
absolute positions of the plane of symmetry are different: it is at z1 − lsym in problem (a) and
actually at z1 in problem (b). Thus, problem (b) leads again to a BVP like that in equation (14)
where the boundary conditions at S3 are known.

If we now assume that field and density distributions between (and only between) the two
colloids are the same in the two problems, we are allowed to take the solution of problem (b) to
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generate the appropriate boundary condition for problem (a). That this assumption is justified
follows from our observation made earlier that the density and field distributions at S3 are not
at all affected by any change in the boundary conditions at S1. This is also why the choice of
the boundary condition at S1 in equation (14) for our reference problem (b) is unimportant.
The boundary condition for ε′ = 0 is certainly the most convenient choice.

From the solution of the reference problem, we can determine the electric field distribution
at z = z1 + lsym which is just the negative of the distribution at z = z1 − lsym. The radial
distribution of the z-component of the electric field, −eβEz(r), at this point is what we are
now looking for: the desired field distribution for the boundary S3 in problem (a). The cor-
responding BVP is identical to equation (14), except for the last line which we now have to
replace by

S3: ∂z�
(n) = −eβEz(r). (A.9)

Note that this procedure for finding a boundary condition from another BVP is justifiable only
if one can be sure that changes of the boundary condition at S1 have no effect on the field and
density distributions at S3.

A.3. The electrostatic potential energy across planar dielectric interfaces

Let us consider, for simplicity, only two ions i and j (each having a single charge e) located
respectively at �ri = (xi, yi, zi) and �rj = (xj , yj , zj ) in a medium of dielectric constant ε, and
close to a wall of dielectric constant ε′. This results in the formation of image charges i ′ and j ′

located at �ri ′ = (xi, yi,−zi) and �rj ′ = (xj , yj ,−zj ) respectively for i and j . Then the relative
distances between the ions (real and image) are: rij for i and j , rij ′ for i and j ′, ri ′j for j and
i ′, rii ′ = 2zi between i and i ′, and finally rjj ′ = 2zj between j and j ′. The potential ψ at the
position of i is

ψi = e

εrij
+

ηe

εrij ′
+

ηe

2εzi
(A.10)

where ηe = e(ε − ε′)/(ε + ε′) is the charge on an image ion. The first term is due to the real
ion j , the second due to its image j ′, and the third term is from the self-image i ′. The potential
at j is the same as equation (A.10) except that i and j are interchanged. Therefore the total
electrostatic potential energy:

βU = β

2

∫
ρψ dV

for a system of ions now becomes

βU = λB

rij
+
λBη

2

(
1

rij ′
+

1

ri ′j
+

1

2zi
+

1

2zj

)
. (A.11)

This equation cleanly separates into purely real (first term) and real–image-charge interactions,
showing explicitly the factor 1/2 in the real–image interaction. For planar interfaces, rij ′ = ri ′j .
We can generalize equation (A.11) for N ions each of charge qke in the region ε, and find

βU = λB

N∑
i<j

(
qiqj

rij
+
ηqiqj

rij ′

)
+
λB

2

N∑
i=1

ηq2
i

2zi
. (A.12)

In (A.12) the factor 1/2 is implicit in the real–image pair interaction and care must be taken
to avoid double counting.
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